Serveur d'exploration sur le chêne en Belgique (avant curation)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Remote sensing data assimilation for a prognostic phenology model

Identifieur interne : 000762 ( Main/Exploration ); précédent : 000761; suivant : 000763

Remote sensing data assimilation for a prognostic phenology model

Auteurs : R. Stöckli [États-Unis, Suisse] ; T. Rutishauser [Suisse] ; D. Dragoni [États-Unis] ; J. O'Keefe [États-Unis] ; P. E. Thornton [États-Unis] ; M. Jolly [États-Unis] ; L. Lu [États-Unis] ; A. S. Denning [États-Unis]

Source :

RBID : ISTEX:182446E1B753A5B6980C98E8BDD3F5C06D395D72

Abstract

Predicting the global carbon and water cycle requires a realistic representation of vegetation phenology in climate models. However most prognostic phenology models are not yet suited for global applications, and diagnostic satellite data can be uncertain and lack predictive power. We present a framework for data assimilation of Fraction of Photosynthetically Active Radiation absorbed by vegetation (FPAR) and Leaf Area Index (LAI) from the MODerate Resolution Imaging Spectroradiometer (MODIS) to constrain empirical temperature, light, moisture and structural vegetation parameters of a prognostic phenology model. We find that data assimilation better constrains structural vegetation parameters than climate control parameters. Improvements are largest for drought‐deciduous ecosystems where correlation of predicted versus satellite‐observed FPAR and LAI increases from negative to 0.7–0.8. Data assimilation effectively overcomes the cloud‐ and aerosol‐related deficiencies of satellite data sets in tropical areas. Validation with a 49‐year‐long phenology data set reveals that the temperature‐driven start of season (SOS) is light limited in warm years. The model has substantial skill (R = 0.73) to reproduce SOS inter‐annual and decadal variability. Predicted SOS shows a higher inter‐annual variability with a negative bias of 5–20 days compared to species‐level SOS. It is however accurate to within 1–2 days compared to SOS derived from net ecosystem exchange (NEE) measurements at a FLUXNET tower. The model only has weak skill to predict end of season (EOS). Use of remote sensing data assimilation for phenology model development is encouraged but validation should be extended with phenology data sets covering mediterranean, tropical and arctic ecosystems.

Url:
DOI: 10.1029/2008JG000781


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Remote sensing data assimilation for a prognostic phenology model</title>
<author>
<name sortKey="Stockli, R" sort="Stockli, R" uniqKey="Stockli R" first="R." last="Stöckli">R. Stöckli</name>
</author>
<author>
<name sortKey="Rutishauser, T" sort="Rutishauser, T" uniqKey="Rutishauser T" first="T." last="Rutishauser">T. Rutishauser</name>
</author>
<author>
<name sortKey="Dragoni, D" sort="Dragoni, D" uniqKey="Dragoni D" first="D." last="Dragoni">D. Dragoni</name>
</author>
<author>
<name sortKey="O Keefe, J" sort="O Keefe, J" uniqKey="O Keefe J" first="J." last="O'Keefe">J. O'Keefe</name>
</author>
<author>
<name sortKey="Thornton, P E" sort="Thornton, P E" uniqKey="Thornton P" first="P. E." last="Thornton">P. E. Thornton</name>
</author>
<author>
<name sortKey="Jolly, M" sort="Jolly, M" uniqKey="Jolly M" first="M." last="Jolly">M. Jolly</name>
</author>
<author>
<name sortKey="Lu, L" sort="Lu, L" uniqKey="Lu L" first="L." last="Lu">L. Lu</name>
</author>
<author>
<name sortKey="Denning, A S" sort="Denning, A S" uniqKey="Denning A" first="A. S." last="Denning">A. S. Denning</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:182446E1B753A5B6980C98E8BDD3F5C06D395D72</idno>
<date when="2008" year="2008">2008</date>
<idno type="doi">10.1029/2008JG000781</idno>
<idno type="url">https://api.istex.fr/document/182446E1B753A5B6980C98E8BDD3F5C06D395D72/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000A04</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000A04</idno>
<idno type="wicri:Area/Istex/Curation">000A04</idno>
<idno type="wicri:Area/Istex/Checkpoint">000440</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000440</idno>
<idno type="wicri:doubleKey">0148-0227:2008:Stockli R:remote:sensing:data</idno>
<idno type="wicri:Area/Main/Merge">000767</idno>
<idno type="wicri:Area/Main/Curation">000762</idno>
<idno type="wicri:Area/Main/Exploration">000762</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Remote sensing data assimilation for a prognostic phenology model</title>
<author>
<name sortKey="Stockli, R" sort="Stockli, R" uniqKey="Stockli R" first="R." last="Stöckli">R. Stöckli</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado</wicri:regionArea>
<placeName>
<region type="state">Colorado</region>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Climate Services, Climate Analysis, MeteoSwiss, Zürich</wicri:regionArea>
<placeName>
<settlement type="city">Zurich</settlement>
<region nuts="3" type="region">Canton de Zurich</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>NASA Earth Observatory, Goddard Space Flight Center, Maryland, Greenbelt</wicri:regionArea>
<wicri:noRegion>Greenbelt</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">Suisse</country>
</affiliation>
</author>
<author>
<name sortKey="Rutishauser, T" sort="Rutishauser, T" uniqKey="Rutishauser T" first="T." last="Rutishauser">T. Rutishauser</name>
<affiliation wicri:level="4">
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Institute of Geography, Oeschger Center for Climate Research, University of Bern, Bern</wicri:regionArea>
<placeName>
<settlement type="city">Berne</settlement>
<region type="région" nuts="3">Canton de Berne</region>
</placeName>
<orgName type="university">Université de Berne</orgName>
</affiliation>
</author>
<author>
<name sortKey="Dragoni, D" sort="Dragoni, D" uniqKey="Dragoni D" first="D." last="Dragoni">D. Dragoni</name>
<affiliation wicri:level="1">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Atmospheric Science Program, Department of Geography, Indiana University, Indiana, Bloomington</wicri:regionArea>
<wicri:noRegion>Bloomington</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="O Keefe, J" sort="O Keefe, J" uniqKey="O Keefe J" first="J." last="O'Keefe">J. O'Keefe</name>
<affiliation wicri:level="4">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Fisher Museum, Harvard Forest, Harvard University, Massachusetts, Petersham</wicri:regionArea>
<orgName type="university">Université Harvard</orgName>
<placeName>
<settlement type="city">Cambridge (Massachusetts)</settlement>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Thornton, P E" sort="Thornton, P E" uniqKey="Thornton P" first="P. E." last="Thornton">P. E. Thornton</name>
<affiliation wicri:level="1">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Terrestrial Sciences Section, National Center for Atmospheric Research, Tennessee, Oak Ridge</wicri:regionArea>
<wicri:noRegion>Oak Ridge</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jolly, M" sort="Jolly, M" uniqKey="Jolly M" first="M." last="Jolly">M. Jolly</name>
<affiliation wicri:level="1">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>US Forest Service, RMRS, Research, Saveland, Montana, Missoula</wicri:regionArea>
<wicri:noRegion>Missoula</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lu, L" sort="Lu, L" uniqKey="Lu L" first="L." last="Lu">L. Lu</name>
<affiliation wicri:level="1">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Atmospheric Science, Colorado State University, Colorado, Fort Collins</wicri:regionArea>
<wicri:noRegion>Fort Collins</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Denning, A S" sort="Denning, A S" uniqKey="Denning A" first="A. S." last="Denning">A. S. Denning</name>
<affiliation wicri:level="1">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Atmospheric Science, Colorado State University, Colorado, Fort Collins</wicri:regionArea>
<wicri:noRegion>Fort Collins</wicri:noRegion>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Geophysical Research: Biogeosciences</title>
<title level="j" type="abbrev">J. Geophys. Res.</title>
<idno type="ISSN">0148-0227</idno>
<idno type="eISSN">2156-2202</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<date type="published" when="2008-12">2008-12</date>
<biblScope unit="volume">113</biblScope>
<biblScope unit="issue">G4</biblScope>
<biblScope unit="page" from="/">n/a</biblScope>
<biblScope unit="page" to="/">n/a</biblScope>
</imprint>
<idno type="ISSN">0148-0227</idno>
</series>
<idno type="istex">182446E1B753A5B6980C98E8BDD3F5C06D395D72</idno>
<idno type="DOI">10.1029/2008JG000781</idno>
<idno type="ArticleID">2008JG000781</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0148-0227</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Predicting the global carbon and water cycle requires a realistic representation of vegetation phenology in climate models. However most prognostic phenology models are not yet suited for global applications, and diagnostic satellite data can be uncertain and lack predictive power. We present a framework for data assimilation of Fraction of Photosynthetically Active Radiation absorbed by vegetation (FPAR) and Leaf Area Index (LAI) from the MODerate Resolution Imaging Spectroradiometer (MODIS) to constrain empirical temperature, light, moisture and structural vegetation parameters of a prognostic phenology model. We find that data assimilation better constrains structural vegetation parameters than climate control parameters. Improvements are largest for drought‐deciduous ecosystems where correlation of predicted versus satellite‐observed FPAR and LAI increases from negative to 0.7–0.8. Data assimilation effectively overcomes the cloud‐ and aerosol‐related deficiencies of satellite data sets in tropical areas. Validation with a 49‐year‐long phenology data set reveals that the temperature‐driven start of season (SOS) is light limited in warm years. The model has substantial skill (R = 0.73) to reproduce SOS inter‐annual and decadal variability. Predicted SOS shows a higher inter‐annual variability with a negative bias of 5–20 days compared to species‐level SOS. It is however accurate to within 1–2 days compared to SOS derived from net ecosystem exchange (NEE) measurements at a FLUXNET tower. The model only has weak skill to predict end of season (EOS). Use of remote sensing data assimilation for phenology model development is encouraged but validation should be extended with phenology data sets covering mediterranean, tropical and arctic ecosystems.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Suisse</li>
<li>États-Unis</li>
</country>
<region>
<li>Canton de Berne</li>
<li>Canton de Zurich</li>
<li>Colorado</li>
<li>Massachusetts</li>
</region>
<settlement>
<li>Berne</li>
<li>Cambridge (Massachusetts)</li>
<li>Zurich</li>
</settlement>
<orgName>
<li>Université Harvard</li>
<li>Université de Berne</li>
</orgName>
</list>
<tree>
<country name="États-Unis">
<region name="Colorado">
<name sortKey="Stockli, R" sort="Stockli, R" uniqKey="Stockli R" first="R." last="Stöckli">R. Stöckli</name>
</region>
<name sortKey="Denning, A S" sort="Denning, A S" uniqKey="Denning A" first="A. S." last="Denning">A. S. Denning</name>
<name sortKey="Dragoni, D" sort="Dragoni, D" uniqKey="Dragoni D" first="D." last="Dragoni">D. Dragoni</name>
<name sortKey="Jolly, M" sort="Jolly, M" uniqKey="Jolly M" first="M." last="Jolly">M. Jolly</name>
<name sortKey="Lu, L" sort="Lu, L" uniqKey="Lu L" first="L." last="Lu">L. Lu</name>
<name sortKey="O Keefe, J" sort="O Keefe, J" uniqKey="O Keefe J" first="J." last="O'Keefe">J. O'Keefe</name>
<name sortKey="Stockli, R" sort="Stockli, R" uniqKey="Stockli R" first="R." last="Stöckli">R. Stöckli</name>
<name sortKey="Thornton, P E" sort="Thornton, P E" uniqKey="Thornton P" first="P. E." last="Thornton">P. E. Thornton</name>
</country>
<country name="Suisse">
<region name="Canton de Zurich">
<name sortKey="Stockli, R" sort="Stockli, R" uniqKey="Stockli R" first="R." last="Stöckli">R. Stöckli</name>
</region>
<name sortKey="Rutishauser, T" sort="Rutishauser, T" uniqKey="Rutishauser T" first="T." last="Rutishauser">T. Rutishauser</name>
<name sortKey="Stockli, R" sort="Stockli, R" uniqKey="Stockli R" first="R." last="Stöckli">R. Stöckli</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Bois/explor/CheneBelgiqueV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000762 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000762 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Bois
   |area=    CheneBelgiqueV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:182446E1B753A5B6980C98E8BDD3F5C06D395D72
   |texte=   Remote sensing data assimilation for a prognostic phenology model
}}

Wicri

This area was generated with Dilib version V0.6.27.
Data generation: Tue Feb 21 23:48:11 2017. Site generation: Wed Mar 6 16:29:49 2024